
Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- µDMA 13 - 1

µDMA

Introduction

This chapter will introduce you to the micro DMA (µDMA) peripheral on Stellaris devices. In the

lab we’ll experiment with the µDMA transfers in memory and to/from the UART.

Agenda

Features...

Introduction to ARM® Cortex™-M4F and Peripherals

Code Composer Studio

Introduction to StellarisWare,
Initialization and GPIO

Interrupts and the Timers

ADC12

Hibernation Module

USB

Memory

Floating-Point

BoosterPacks and grLib

Synchronous Serial Interface

UART

µDMA

Chapter Topics

13 - 2 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- µDMA

Chapter Topics

µDMA ..13-1

Chapter Topics ...13-2

Features and Transfer Types ...13-3

Block Diagram and Channel Assignment ..13-4

Channel Configuration ..13-5

Lab 12: µDMA ...13-7
Objective..13-7
Procedure ...13-8

 Features and Transfer Types

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- µDMA 13 - 3

Features and Transfer Types

µDMA Features

Transfer types...

 32 channels

 SRAM to SRAM , SRAM to peripheral and peripheral to
SRAM transfers (no Flash or ROM transfers are possible)

 Basic, Auto (transfer completes even if request is removed),
Ping-Pong and Scatter-gather (via a task list)

 Two priority levels

 8, 16 and 32-bit data transfer sizes

 Transfer sizes of 1 to 1024 elements (in binary steps)

 CPU bus accesses outrank DMA controller

 Source and destination address increment sizes:
size of element, half-word, word, no increment

 Interrupt on transfer completion (per channel)

 Hardware and software triggers

 Single and Burst requests

 Each channel can specify a minimum # of transfers before
relinquishing to a higher priority transfer.
Known as “Burst” or “Arbitration”

Transfer Types

Basic
 Single to Single

 Single to Array

 Array to Single

 Array to Array

Auto
 Same as Basic but the transfer completes even if the

request is removed

Ping-Pong
 Single to Array (and vice-versa). Normally used to stream

data from a peripheral to memory. When the PING array is
full the µDMA switches to the PONG array, freeing the
PING array for use by the program.

Scatter-Gather
 Many Singles to an Array (and vice-versa). May be used to

read elements from a data stream or move objects in a
graphics memory frame.

Block diagram...

Block Diagram and Channel Assignment

13 - 4 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- µDMA

Block Diagram and Channel Assignment

µDMA Block Diagram

Channels...

µDMA Channels
 Each channel has 5 possible assignments made in the DMACHMAPn register

S = Single

B = Burst

SB = Both

Configuration...

 Channel Configuration

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- µDMA 13 - 5

Channel Configuration

Channel Configuration
 Channel control is done via a set of control structures in a table

 The table must be located on a 1024-byte boundary

 Each channel can have one or two control structures; a primary and an alternate

 The primary structure is for BASIC and AUTO transfers. Alternate is for Ping-Pong

and Scatter-gather

Control Structure Memory Map Channel Control Structure

Control word contains:

 Source and Dest data sizes

 Source and Dest addr increment size

 # of transfers before bus arbitration

 Total elements to transfer

 Useburst flag

 Transfer mode

Lab...

Channel Configuration

13 - 6 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- µDMA

 Lab 13: µDMA

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- µDMA 13 - 7

Lab 13: µDMA

Objective

In this lab you will experiment with the µDMA, transferring arrays of data in memory and then

transferring data to and from the UART.

Lab 13: Transferring Data with the µDMA

 Perform an array to array memory
transfer

 Transfer data to and from the UART

USB Emulation Connection

Wrap-up ...

Lab 13: µDMA

13 - 8 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- µDMA

Procedure

Import Lab13

1. We have already created the Lab13 project for you with main.c, a startup file and all

necessary project and build options set. Maximize Code Composer and click Project

Import Existing CCS Eclipse Project. Make the settings shown below and click Finish.

Make sure that the “Copy projects into workspace” checkbox is unchecked.

 Lab 13: µDMA

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- µDMA 13 - 9

Browse the Code

2. In order to save some time, we’re going to browse this existing code rather than enter it

line by line. Open main.c in the editor pane and we’ll get started. If you accidentally

make a change, this code is also in main1.txt in the Lab13\ccs folder.

This code is actually a stripped-down version of the uDMA_demo example in

C:\StellarisWare\boards\ek-lm4f120xl . To make things a little simpler the

UART portion of the code was removed.

At the top of the code you’ll find all the normal includes, especially udma.h since we’ll

be using that peripheral.

3. Just under includes are the definitions for the source and destination buffers, two error

counter variables and a counter to track the number of transfers.

#define MEM_BUFFER_SIZE 1024
static unsigned long g_ulSrcBuf[MEM_BUFFER_SIZE];
static unsigned long g_ulDstBuf[MEM_BUFFER_SIZE];

static unsigned long g_uluDMAErrCount = 0;
static unsigned long g_ulBadISR = 0;

static unsigned long g_ulMemXferCount = 0;

4. Below that, the µDMA control table is defined. Remember that the table must be aligned

to a 1024-byte boundary. The #pragma will do that for us. If you are using a different

IDE, this construct may be different. The table probably doesn’t need to be 1K in length,

but that’s fine for this example.

#pragma DATA_ALIGN(ucControlTable, 1024)
unsigned char ucControlTable[1024];

5. Below the control table definition is the library error handler that we’ve covered earlier.

Next is the µDMA error handler code. If the µDMA controller encounters a bus or memory

protection error as it attempts to perform a data transfer, it disables the µDMA channel that

caused the error and generates an interrupt on the µDMA error interrupt vector. The handler here

will clear the error and increment the error count.

void uDMAErrorHandler(void)
{
 unsigned long ulStatus;
 ulStatus = ROM_uDMAErrorStatusGet();

 if(ulStatus)
 {
 ROM_uDMAErrorStatusClear();
 g_uluDMAErrCount++;
 }
}

Lab 13: µDMA

13 - 10 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- µDMA

6. Below the error handler is the µDMA interrupt handler. The interrupt that runs this

handler is triggered by the completion of the programmed transfer. The code first checks

to see if the µDMA channel is in stop mode. If it is, the transfer count is incremented, the

µDMA is set up for another transfer and the next transfer is triggered. If this interrupt was

triggered in error, the bad ISR variable will be incremented.

The last two lines inside the if() trigger the second and every subsequent µDMA

request.

void
uDMAIntHandler(void)
{
 unsigned long ulMode;

 ulMode = ROM_uDMAChannelModeGet(UDMA_CHANNEL_SW);
 if(ulMode == UDMA_MODE_STOP)
 {
 g_ulMemXferCount++;

 ROM_uDMAChannelTransferSet(UDMA_CHANNEL_SW, UDMA_MODE_AUTO,
 g_ulSrcBuf, g_ulDstBuf, MEM_BUFFER_SIZE);

 ROM_uDMAChannelEnable(UDMA_CHANNEL_SW);
 ROM_uDMAChannelRequest(UDMA_CHANNEL_SW);
 }
 else
 {
 g_ulBadISR++;
 }
}

 Lab 13: µDMA

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- µDMA 13 - 11

7. Next is the InitSWTransfer() function. This code initializes the µDMA software

channel to perform a memory to memory transfer. We’ll be triggering these transfers

from software, so we’ll use the software µDMA channel (UDMA_CHANNEL_SW).

The for() construct at the top initializes the source array with a simple pattern.

The next line enables the µDMA interrupt to the NVIC.

The next line disables the listed attributes of the software µDMA channel so that it’s in a

known state.

The ROM_uDMAChannelControlSet() API sets up the control parameters for the software

channel µDMA control structure. Notice that we’ll be using the primary (not the alternate set)

and that the element size and increment sizes are 32-bits. The arbitration count is 8.

The ROM_uDMAChannelTransferSet() API sets up the transfer parameters for the software

channel µDMA control structure. Again, this is for the primary set, auto mode (continue

transfer until completion even if request is removed … common for software requests),

the source and destination buffer addresses and the size of the transfer.

Finally, the code enables the software channel and makes the first µDMA request.

void
InitSWTransfer(void)
{
 unsigned int uIdx;

 for(uIdx = 0; uIdx < MEM_BUFFER_SIZE; uIdx++)
 {
 g_ulSrcBuf[uIdx] = uIdx;
 }

 ROM_IntEnable(INT_UDMA);

 ROM_uDMAChannelControlSetAttributeDisable(UDMA_CHANNEL_SW,
 UDMA_ATTR_USEBURST | UDMA_ATTR_ALTSELECT |
 (UDMA_ATTR_HIGH_PRIORITY |
 UDMA_ATTR_REQMASK));

 ROM_uDMAChannelControlSet(UDMA_CHANNEL_SW | UDMA_PRI_SELECT,
 UDMA_SIZE_32 | UDMA_SRC_INC_32 | UDMA_DST_INC_32 |
 UDMA_ARB_8);

 ROM_uDMAChannelTransferSet(UDMA_CHANNEL_SW | UDMA_PRI_SELECT,
 UDMA_MODE_AUTO, g_ulSrcBuf, g_ulDstBuf,
 MEM_BUFFER_SIZE);

 ROM_uDMAChannelEnable(UDMA_CHANNEL_SW);
 ROM_uDMAChannelRequest(UDMA_CHANNEL_SW);

}

Lab 13: µDMA

13 - 12 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- µDMA

8. Lastly, we’ll look at the code in main().

 Lazy stacking allows floating point to be used inside interrupt handlers, but uses

additional stack space. This isn’t strictly needed since we aren’t doing any

floating-point operations in the handler.

 Set up the clock to 50MHz.

 Enable the µDMA peripheral.

 ROM_SysCtlPeripheralSleepEnable() enables the clock to reach this peripheral

while the CPU is sleeping. This isn’t strictly required here, but if you forget it and put the

CPU to sleep, it will be horrible to track down the problem.

 Then enable the µDMA error interrupt and then the µDMA itself.

 Make sure the control channel base address is set to the one we created.

 Call the InitSWTransfer() function and start the first transfer, then have the

CPU wait in the while(1) loop. In your actual code this would be where you’d

either sleep or do something else with those CPU cycles.

int
main(void)
{
 ROM_FPULazyStackingEnable();

 ROM_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
 SYSCTL_XTAL_16MHZ);

 ROM_SysCtlPeripheralClockGating(true);

 ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UDMA);
 ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_UDMA);

 ROM_IntEnable(INT_UDMAERR);
 ROM_uDMAEnable();

 ROM_uDMAControlBaseSet(ucControlTable);
 InitSWTransfer();

 while(1)
 {

 }

}

 Lab 13: µDMA

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- µDMA 13 - 13

Build, Download and Run the Code

9. Click the Debug button to build and download the code to the LM4F120H5QR flash

memory.

10. On the CCS menu bar click View Memory Browser. Move/resize the window if you

have to. Enter g_ulSrcBuf in the box below the Memory Browser tab and click the Go

button. Click the New Tab button, enter g_ulDstBuf in the box and click Go again.

Note that both arrays are clear. Click on the g_ulSrcBuf tab to view the source array.

11. Set a breakpoint inside the InitSWTransfer() function on the line containing

ROM_IntEnable(INT_UDMA); (about line 98). This will let us see the contents of the

source array before any transfers begin.

12. Click the Resume button to run to the breakpoint. In the Memory Browser, note the

initialized values in the source array. Check the destination array to make sure it’s still

clear.

13. Remove the breakpoint you just set and set another one inside the uDMAIntHandler

function on the line containing ROM_uDMAChannelTransferSet() . This breakpoint will

occur after the transfer is completed and the transfer count has been incremented, but

before the next transfer has been initiated.

14. Add a watch expression on g_ulMemXferCount, switch the Memory Browser to the

destination tab and click the Resume button. You’ll see the destination buffer update with

the previous contents of the source buffer and the transfer count variable will now be 1.

You can click Resume a few times and watch the transfer count increment, but since the

source buffer never changes, the destination buffer will look the same after each transfer.

15. Delete the breakpoint you just added. Add watch expressions on g_ulBadIsr and

g_uluDMAErrCount. Click Resume. After a few moments, click the Suspend button. We

saw over 200,000 transfers and 0 errors.

16. Remove all of the watch expressions by right-clicking in the Expressions pane and

selecting Remove All Yes. Close the Memory Browser pane.

17. Click the Terminate button to return to the CCS Edit perspective.

Lab 13: µDMA

13 - 14 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- µDMA

Streaming Data To and From the UART using a Ping-Pong Buffer

In real-world applications, incoming or outgoing data doesn’t usually stop. If you are receiving

data from an ADC or sending/receiving data to/from a UART, the best way to make sure the data

always has a place to go to or from is to use a Ping-Pong buffer. Take a filtering application like

the one shown below:

Here the DMA on the left is responsible for bringing data from the ADC into memory. When the

PING IN buffer is full, the DMA signals the CPU (with an interrupt) and switches its destination

to the PONG IN buffer (and vice versa). The CPU filters the frame of data from the PING IN

buffer, sends the result to the PING OUT buffer and triggers the DMA on the right to send it to

the DAC (and vice versa). This is a straight-forward Input – Process – Output technique. When

properly synchronized and timed, all three processes happen simultaneously and there is no

chance for a “skip” or “miss” of even a single bit a data, as long as the CPU is capable of

processing the buffer of data in the same amount of time that it takes to fill or empty the buffer

from/to the outside world.

This example will be a little simpler. We’ll have a single transmit buffer, since the data in it won’t

change. The transmit DMA will send that buffer to the UART transmit register continuously. The

UART will be configured in loopback mode so that data will be streaming back in continuously.

The receive DMA will stream the data received from the UART data receive register into a Ping-

Pong buffer that we can observe.

What makes this DMA programming interesting is that the primary and alternate modes must be

used in order for the DMA to switch Ping-Pong buffers automatically. Also, the DMA transfers

that point to the UART must not increment, otherwise they would write data into the wrong

location. At the same time, the DMA must increment through the Ping and Pong buffer to fill

them.

 Lab 13: µDMA

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- µDMA 13 - 15

18. Delete all the code in main.c. Double-click on main2.txt in your Project Explorer

pane to open it for editing. Copy the contents of main2.txt into your now empty

main.c. Close main2.txt and save your work.

19. In order for this code to build and run, we’ll need to make a couple of changes to the in-

terrupt vectors used in startup_ccs.c . Open startup_ccs.c for editing.

20. It’s very easy to make an error in the next three steps. Cut and paste if you can.

Find the two lines near the top of the file shown below:

extern void uDMAErrorHandler(void);
extern void uDMAIntHandler(void);

and change them to read:

extern void uDMAErrorHandler(void);
extern void UART1IntHandler(void);

21. Around line 131, find the uDMAIntHandler entry for the uDMA Software Transfer

vector and change it to IntDefaultHandler.

22. Around line 91, find the IntDefaultHandler entry for the UART1 Rx and Tx vector

and change it to UART1IntHandler. Save your work and close startup_ccs.c.

Follow these last four steps in reverse if you want to go back to the memory to memory

transfer example.

Browse the Code

23. Starting at the top, notice the additional includes to handle the UART. Just below them

are the definitions for the single Tx and two Rx Ping and Pong buffers. Then you’ll find

the uDMA error count and transfer count variables.

24. Next is the allocation for the uDMA control table. This table is read by the uDMA

peripheral hardware and must be aligned on a 1024-byte boundary.

25. Below the table allocation is the familiar library error routine and the same uDMA error

handler from the first part of this lab.

Lab 13: µDMA

13 - 16 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- µDMA

26. The heart of this code is the UART interrupt handler. This ISR is run when the receive

ping (primary) or pong (alternate) buffer is full or when the transmit buffer is empty.

Note the ulMode = lines that determine which event triggered the interrupt.

In the receive buffers the mode is verified to be stopped and the proper transfer count is

incremented. You’ll see in the initialization that both the primary and alternate

parameters are already set up. When the Ping side of the transfer causes an interrupt, the

uDMA is already processing the Pong side, so the TransferSet API resets the

parameters for the flowing Ping transfer. Note that the source is the UART data register.

The transmit transfer is a basic transfer and needs to be re-enabled each time it completes.

Note that the destination is the same UART data register.

void
UART1IntHandler(void)
{
 unsigned long ulStatus;
 unsigned long ulMode;

 ulStatus = ROM_UARTIntStatus(UART1_BASE, 1);

 ROM_UARTIntClear(UART1_BASE, ulStatus);

 ulMode = ROM_uDMAChannelModeGet(UDMA_CHANNEL_UART1RX | UDMA_PRI_SELECT);

 if(ulMode == UDMA_MODE_STOP)
 {
 g_ulRxPingCount++;

 ROM_uDMAChannelTransferSet(UDMA_CHANNEL_UART1RX | UDMA_PRI_SELECT,
 UDMA_MODE_PINGPONG,
 (void *)(UART1_BASE + UART_O_DR),
 g_ucRxPing, sizeof(g_ucRxPing));
 }

 ulMode = ROM_uDMAChannelModeGet(UDMA_CHANNEL_UART1RX | UDMA_ALT_SELECT);

 if(ulMode == UDMA_MODE_STOP)
 {
 g_ulRxPongCount++;

 ROM_uDMAChannelTransferSet(UDMA_CHANNEL_UART1RX | UDMA_ALT_SELECT,
 UDMA_MODE_PINGPONG,
 (void *)(UART1_BASE + UART_O_DR),
 g_ucRxPong, sizeof(g_ucRxPong));
 }

 if(!ROM_uDMAChannelIsEnabled(UDMA_CHANNEL_UART1TX))
 {

 ROM_uDMAChannelTransferSet(UDMA_CHANNEL_UART1TX | UDMA_PRI_SELECT,
 UDMA_MODE_BASIC, g_ucTxBuf,
 (void *)(UART1_BASE + UART_O_DR),
 sizeof(g_ucTxBuf));

 ROM_uDMAChannelEnable(UDMA_CHANNEL_UART1TX);
 }

}

 Lab 13: µDMA

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- µDMA 13 - 17

27. The µDMA and UART must be initialized and the next function,

InitUART1Transfer() does that.

The for() loop at the beginning initializes the transmit buffer with some count data.

The next two lines enable UART1 and make sure that the clock to the peripheral will still

be available even if the CPU is sleeping. This last step isn’t strictly needed, but many

programs utilizing the DMA do sleep and if you forget this step, if will not be easy to

track down.

The next six lines configure the UART clock, the FIFO utilization, enable it, enable it to

use the DMA, set loopback mode and enable the interrupt.

Next up are the µDMA control and transfer programming steps.

ROM_uDMAChannelAttributeDisable() turns off all the indicated parameters to

assure the starting point.

The next two ROM_uDMAChannelControlSet() lines set up the control parameters for

the Ping (primary) and Pong (alternate) sets. Note that the transfer element size is 8-bits,

the source increment is none (since it should be pointing to the UART data register all the

time) and the destination increment is 8-bits.

The next two ROM_uDMAChannelTransferSet() lines program the transfer

parameters for both the Ping (primary) and Pong (alternate) sets. Note that the mode is

PINGPONG, the source is the UART data register and the destination is the appropriate

Ping or Pong buffer.

The next four lines set up the control and transfer parameters for the transmit channel.

Note that the destination is the UART data register and the source is the single transmit

buffer. The element transfer size is 8-bits, the source increment is 8-bits and the

destination increment is none.

In all of these setting the priority has been left as HIGH. It doesn’t make sense to

prioritize the transmit over the receive or vice versa.

The final two lines enable both µDMA transfers.

Lab 13: µDMA

13 - 18 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- µDMA

void InitUART1Transfer(void)
{
 unsigned int uIdx;

 for(uIdx = 0; uIdx < UART_TXBUF_SIZE; uIdx++)
 {
 g_ucTxBuf[uIdx] = uIdx;
 }

 ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UART1);
 ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_UART1);

 ROM_UARTConfigSetExpClk(UART1_BASE, ROM_SysCtlClockGet(), 115200,
 UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE |
 UART_CONFIG_PAR_NONE);

 ROM_UARTFIFOLevelSet(UART1_BASE, UART_FIFO_TX4_8, UART_FIFO_RX4_8);

 ROM_UARTEnable(UART1_BASE);
 ROM_UARTDMAEnable(UART1_BASE, UART_DMA_RX | UART_DMA_TX);

 HWREG(UART1_BASE + UART_O_CTL) |= UART_CTL_LBE;

 ROM_IntEnable(INT_UART1);

 ROM_uDMAChannelAttributeDisable(UDMA_CHANNEL_UART1RX,
 UDMA_ATTR_ALTSELECT | UDMA_ATTR_USEBURST |
 UDMA_ATTR_HIGH_PRIORITY |
 UDMA_ATTR_REQMASK);

 ROM_uDMAChannelControlSet(UDMA_CHANNEL_UART1RX | UDMA_PRI_SELECT,
 UDMA_SIZE_8 | UDMA_SRC_INC_NONE | UDMA_DST_INC_8 |
 UDMA_ARB_4);

 ROM_uDMAChannelControlSet(UDMA_CHANNEL_UART1RX | UDMA_ALT_SELECT,
 UDMA_SIZE_8 | UDMA_SRC_INC_NONE | UDMA_DST_INC_8 |
 UDMA_ARB_4);

 ROM_uDMAChannelTransferSet(UDMA_CHANNEL_UART1RX | UDMA_PRI_SELECT,
 UDMA_MODE_PINGPONG,
 (void *)(UART1_BASE + UART_O_DR),
 g_ucRxPing, sizeof(g_ucRxPing));

 ROM_uDMAChannelTransferSet(UDMA_CHANNEL_UART1RX | UDMA_ALT_SELECT,
 UDMA_MODE_PINGPONG,
 (void *)(UART1_BASE + UART_O_DR),
 g_ucRxPong, sizeof(g_ucRxPong));

 ROM_uDMAChannelAttributeDisable(UDMA_CHANNEL_UART1TX,
 UDMA_ATTR_ALTSELECT |
 UDMA_ATTR_HIGH_PRIORITY |
 UDMA_ATTR_REQMASK);

 ROM_uDMAChannelAttributeEnable(UDMA_CHANNEL_UART1TX, UDMA_ATTR_USEBURST);

 ROM_uDMAChannelControlSet(UDMA_CHANNEL_UART1TX | UDMA_PRI_SELECT,
 UDMA_SIZE_8 | UDMA_SRC_INC_8 | UDMA_DST_INC_NONE |
 UDMA_ARB_4);

 ROM_uDMAChannelTransferSet(UDMA_CHANNEL_UART1TX | UDMA_PRI_SELECT,
 UDMA_MODE_BASIC, g_ucTxBuf,
 (void *)(UART1_BASE + UART_O_DR),
 sizeof(g_ucTxBuf));

 ROM_uDMAChannelEnable(UDMA_CHANNEL_UART1RX);
 ROM_uDMAChannelEnable(UDMA_CHANNEL_UART1TX);

}

 Lab 13: µDMA

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- µDMA 13 - 19

28. Finally we’re in main().

Starting at the top we have the lazy stacking enable, which probably isn’t necessary since

we’re not using the PFU in the handlers.

The clock is set up to 50MHz and the peripherals are allowed to be clocked during sleep

mode.

GPIO port F is enabled and set up for the LEDs. We’ll only be using the blue LED.

The next five lines set up the hardware for the UART on port A pins 0 and 1.

The five lines afterwards enable the uDMA clock, allow it to operate during sleep modes,

enable the error interrupt, enable the uDMA for operation and sets the base address for

the uDMA control table.

Then the initialization function is called for the transfers.

The while(1) loop simply blinks the blue LED while the transfers are happening to let

us know the code is alive.

int main(void)
{
 volatile unsigned long ulLoop;

 ROM_FPULazyStackingEnable();

 ROM_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
 SYSCTL_XTAL_16MHZ);

 ROM_SysCtlPeripheralClockGating(true);

 ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
 ROM_GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_2);

 ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);
 ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_UART0);
 GPIOPinConfigure(GPIO_PA0_U0RX);
 GPIOPinConfigure(GPIO_PA1_U0TX);
 ROM_GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);

 ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UDMA);
 ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_UDMA);
 ROM_IntEnable(INT_UDMAERR);
 ROM_uDMAEnable();
 ROM_uDMAControlBaseSet(ucControlTable);

 InitUART1Transfer();

 while(1)
 {
 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, GPIO_PIN_2);

 SysCtlDelay(SysCtlClockGet() / 20 / 3);

 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, 0);

 SysCtlDelay(SysCtlClockGet() / 20 / 3);
 }

}

Lab 13: µDMA

13 - 20 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- µDMA

Build, Load and Run

29. Click the Debug button to build and load the program.

30. In order to determine of the program is operating properly, we need to see the buffers.

One the CCS menu bar, click View Memory Browser. Enter g_ucRxPing in the box

below the Memory Browser tab and click the Go button. The RxPing, RxPong and Tx

buffers are all close together, so you should be able to see them in the same window.

Resize if necessary.

31. Notice that the Tx buffer is clear. Set a breakpoint in the InitUART1Transfer()

function on the line containing

ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UART1); . This is right after the

Tx buffer is initialized with data.

32. Click the Resume button to run to the breakpoint. Note in the Memory Browser that the

Tx buffer is now filled with data.

33. Remove the breakpoint and set another in UART1IntHandler() on the line containing

ulStatus = . This breakpoint will trip when the first (Pong) transfer completes

34. Click the Resume button to run to the breakpoint. Note in the Memory Browser that the

RxPing buffer is now filled with data. Click Resume again and the RxPong buffer will

fill.

35. Add a watch expressions on g_ulRxPingCount and g_ulRxPingCount found in

UART1IntHandler() . Add another watch expression on g_uluDMAErrCount found

in uDMAErrorHandler() . Change the properties of the breakpoint so that its Action is

Refresh All Windows.

36. Click Resume. The transfer counters should track and the error count should be zero.

You’ll also notice that the LED on the LaunchPad stops blinking. Since the CPU is

stopping at the breakpoint and transferring data to the PC, the next uDMA interrupt

occurs before any code can run in the while(1) loop. Consider that when using this

technique to debug.

The Memory browser isn’t very interesting since the Tx buffer never changes. Let’s fix

that.

37. Halt the code and find the Tx buffer portion of the UART1IntHandler. Add the line

highlighted below. This will increment the first location in the Tx buffer (and yes, I know

that it’s cast as a character):

 if(!ROM_uDMAChannelIsEnabled(UDMA_CHANNEL_UART1TX))
 {
 g_ucTxBuf[0]++;
 ROM_uDMAChannelTransferSet(UDMA_CHANNEL_UART1TX | UDMA_PRI_SELECT,
 UDMA_MODE_BASIC, g_ucTxBuf,
 (void *)(UART1_BASE + UART_O_DR),
 sizeof(g_ucTxBuf));

 ROM_uDMAChannelEnable(UDMA_CHANNEL_UART1TX);

 }

 Lab 13: µDMA

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- µDMA 13 - 21

38. Build, load and Run. You may need to click the Go button in the Memory Browser again.

The first location in all three buffers should be incrementing.

39. When you’re done, click the Terminate button to return to the CCS Edit perspective. Now

that the CCS windows aren’t being updated, the blue LED will start blinking again.

40. Right-click on Lab13 in the Project Explorer pane and close the project.

41. Close Code Composer Studio.

 You’re done.

Lab 13: µDMA

13 - 22 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- µDMA

